### **UMWELT-PRODUKTDEKLARATION**

nach ISO 14025 und EN 15804+A2

Deklarationsinhaber Meesenburg Großhandel KG

Herausgeber Institut Bauen und Umwelt e.V. (IBU

Deklarationsnummer EPD-MEN-20230044-IBE1-DE

Ausstellungsdatum 14.04.2023 Gültig bis 13.04.2028

# blaugelb Sockeldämmprofil EPS Meesenburg Großhandel KG

www.ibu-epd.com | https://epd-online.com







(Geschäftsführer des Instituts Bauen und Umwelt e.V.)

### 1. Allgemeine Angaben Meesenburg Großhandel KG blaugelb Sockeldämmprofil EPS Inhaber der Deklaration Programmhalter IBU - Institut Bauen und Umwelt e.V. Meesenburg Großhandel KG Westerallee 162 Hegelplatz 1 24941 Flensburg 10117 Berlin Deutschland Deutschland Deklarationsnummer Deklariertes Produkt/deklarierte Einheit EPD-MEN-20230044-IBE1-DE 1 m³ blaugelb Sockeldämmprofil EPS Diese Deklaration basiert auf den Produktkategorien-Regeln: Gültigkeitsbereich: Dämmstoffe aus Schaumkunststoffen, 01.01.0001 Die vorliegende Umwelt-Produktdeklaration bezieht sich auf eine deklarierte Einheit von 1 m³ blaugelb Sockeldämmprofil EPS mit einer (PCR geprüft und zugelassen durch den unabhängigen Sachverständigenrat (SVR)) Rohdichte von 150 kg/m³, vertrieben durch die Meesenburg Großhandel KG. Die Ökobilanz ist repräsentativ für 100 % der Produkte. Ausstellungsdatum Der Inhaber der Deklaration haftet für die zugrundeliegenden Angaben und Nachweise; eine Haftung des IBU in Bezug auf Herstellerinformationen, 14.04.2023 Ökobilanzdaten und Nachweise ist ausgeschlossen. Die EPD wurde nach den Vorgaben der EN 15804+A2 erstellt. Im Gültig bis Folgenden wird die Norm vereinfacht als EN 15804 bezeichnet. 13.04.2028 Verifizierung Die Europäische Norm EN 15804 dient als Kern-PCR Unabhängige Verifizierung der Deklaration und Angaben gemäß ISO 14025:2011 X intern extern Dipl.-Ing. Hans Peters (Vorstandsvorsitzender des Instituts Bauen und Umwelt e.V.) Dipl.-Ing. Hans Peters Matthias Schulz,

Unabhängige/-r Verifizierer/-in



### 2. Produkt

### 2.1 Produktbeschreibung/Produktdefinition

In dieser Umwelt-Produktdeklaration (EPD) werden blaugelb Sockeldämmprofile EPS aus einem hochverdichteten EPS (expandiertes Polystyrol) der Meesenburg Großhandel KG deklariert.

Das blaugelb Sockeldämmprofil EPS ist für Wärme- und Feuchteschutz an Haus- und Balkontüren aus Holz, Holz/Aluminium, Aluminium und Kunststoff einsetzbar. Es ermöglicht eine thermische Trennung, reduziert die möglichen Wärmebrücken herkömmlicher Kunststoffprofile mit Stahlarmierung.

Für das Inverkehrbringen des Produkts in der EU/EFTA (mit Ausnahme der Schweiz) gilt die Verordnung (EU) Nr. 305/2011 (CPR).

Das Produkt benötigt eine Leistungserklärung unter Berücksichtigung der DIN EN 13163:2017-02, Wärmedämmstoffe für Gebäude - Werkmäßig hergestellte Produkte aus expandiertem Polystyrol (EPS) und die CE-Kennzeichnung.

Für die Verwendung der Produkte gelten die jeweiligen nationalen Bestimmungen und Zulassungen. Die Zulassungen in Deutschland beinhalten insbesondere Angaben zum Bemessungswert der Wärmeleitfähigkeit und zum Brandverhalten, sowie DIN 4108-10:2021-11, Wärmeschutz und Energie-Einsparung in Gebäude – Anwendungsbezogene Anforderungen an Wärmedämmstoffe, für werkmäßig hergestellte Wärmedämmstoffe mit den Mindestanforderungen für die einzelnen Anwendungsgebiete.

### 2.2 Anwendung

Das blaugelb Sockeldämmprofil EPS wurde speziell für die Montage als Bodeneinstandsprofil unter Hebe-Schiebetüren und Schwellensystemen sowie für Sonderkonstruktionen mit hoher Lastabtragung entwickelt. Durch die Schwalbenschwanzverbindung können die blaugelb Sockeldämmprofile EPS formschlüssig ineinandergefügt und somit endlos verarbeitet werden.

Hauptanwendungsgebiet für die hier deklarierten Produkte blaugelb Sockeldämmprofile EPS sind:

- bodentiefe Elemente Einbausituation Blendrahmen
- bodentiefe Elemente Einbausituation Schwelle
- bodentiefe Elemente Einbausituation Hebe-Schiebetür
- Im Bereich der bodentiefen Anschlüsse mit hohen Anforderungen an Festigkeit, Druckbelastung und dämmende Eigenschaften
- Dämmung Türanschlüssen (z. B. Stahlträger, Betonstützen)
- Dämmung von kritischen Bereichen (z. B. in Holz-Aluminium, Aluminium und PVC Systemen).

### 2.3 Technische Daten

Folgende (bau)technische Daten im Lieferzustand sind für das deklarierte Produkt relevant:

### **Bautechnische Daten**

| Bezeichnung                                                                                                                             | Wert            | Einheit |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|
| Brandverhalten nach EN 13501-1                                                                                                          | Euroklasse<br>E |         |
| Wasseraufnahme bei langzeitigem<br>Eintauchen, Wlt [%] gemäß EN 12087                                                                   | ≤ 0,5           | %       |
| Abgabe gefährlicher Substanzen in das<br>Gebäudeinnere                                                                                  | NPD             |         |
| Wärmedurchlasswiderstand R [m²K/W]<br>nach EN 12667                                                                                     | 0,5125          | m²K/W   |
| Wärmeleitfähigkeit, λ(10) nach EN 12667                                                                                                 | 0,0403          | W/m*K   |
| Wasserdampfdurchlässigkeit:<br>Wasserdampf-Diffusionswiderstandszahl<br>(μ) gemäß EN 12086                                              | 228             | μ       |
| Luftdurchlässigkeit nach EN 12207                                                                                                       | Klasse 4        |         |
| Druckspannung (2 %) Stauchung nach EN<br>13163/EN 826                                                                                   | ≥ 1435          | kPa     |
| Druckfestigkeit: Druckspannung bei 10 %<br>Stauchung [kPa] nach EN 826                                                                  | 2090            | kPa     |
| Druckfestigkeit: Verformung bei definierter<br>Druck- und Temperaturbeanspruchung bei<br>40 kPa, 70 °C und 168 h, DLT 5 nach EN<br>1605 | < 0,4           | %       |
| Biegefestigkeit nach EN 12089                                                                                                           | 2490            | kPa     |
| Scherfestigkeit nach ISO 14130                                                                                                          | 0,217           | N/mm²   |
| Dauerhaftigkeit des Brandverhaltens unter<br>Einfluss von Wärme, Witterung,<br>Alterung/Abbau Eigenschaften der<br>Beständigkeit        | NPD             |         |
| Dauerhaftigkeit des<br>Wärmedurchlasswiderstandes<br>Eigenschaften der Beständigkeit                                                    | erfüllt         |         |
| Dimensionsstabilität bei definierten<br>Temperatur- und Feuchtebedingungen<br>nach EN 1604                                              | DS(70,-)1       |         |
| Dimensionsstabilität bei Normalklima nach EN 1603                                                                                       | DS(N-)5         |         |
| Beständigkeit der Druckfestigkeit gegen<br>Alterung/Abbau Kriechverhalten                                                               | NPD             |         |
| Beständigkeit der Druckfestigkeit gegen<br>Alterung/Abbau Frost-Tau-<br>Wechselbeanspruchung                                            | NPD             |         |
| Drucklasttragfähigkeit bei max.<br>Gesamtverformung von 2 %                                                                             | 1260            | kg/dm²  |
| Wasseraufnahme bei 28 Tagen<br>Unterwasserlagerung nach EN 12087                                                                        | ≤ 0,5           | Vol-%   |

NPD = No Performance Determined/keine Leistung festgelegt

Leistungswerte des Produkts entsprechend der Leistungserklärung in Bezug auf dessen wesentliche Merkmale gemäß DIN EN 13163:2017-02, Wärmedämmstoffe für Gebäude - Werkmäßig hergestellte Produkte aus expandiertem Polystyrol (EPS).

Die Fremdüberwachung durch Werksentnahme sowie die Zertifizierung erfolgen durch bauaufsichtlich zugelassene Prüf-, Überwachungs- und Zertifizierungsstellen.

- Statische Auswertung zur Wärmeleitfähigkeit gemäß Normen und Prüfberichte der Materialprüfanstalt MPA BS (EN 13163, ISO 10456)
- Luftdurchlässigkeit Klasse 4 nach EN 12207



- Luftschalldämmung nach ISO 717-1 (bei einer Fläche von 0.8 m²)
- Schallschutz ISO 10140-2 MFPA Leipzig GmbH
- Brandschutz GAS MPA Braunschweig
- technische Datenblätter aller angebotenen Montagematerialien
- · Verträglichkeit mit angrenzenden Baustoffen

### 2.4 Lieferzustand

Die Abmessungen sind konform zu den Zulassungsbescheiden. Standardabmessungen: Länge 1.175 bis 1.200 mm, Tiefe von 50 bis 90 mm, Höhe von 30 bis 400 mm. Andere Abmessungen sind möglich.

### 2.5 Grundstoffe/Hilfsstoffe

Das polymere Basisprodukt für Styropor bzw. EPS-Hartschaum ist Polystyrol (PS). Es wird durch Polymerisation von monomerem Styrol nach verschiedenen Verfahren hergestellt.

Das am häufigsten eingesetzte Verfahren ist die Polymerisation in einer Styrol-Wasser-Suspension, wobei das Treibmittel Pentan gegen Ende der Polymerisation zugesetzt wird. Das so gewonnene PS-Granulat wird in nachgelagerten physikalischen Verarbeitungsschritten zum Schaumstoff weiterverarbeitet.

Der Basisrohstoff für die Dämmstoffherstellung wird in Form von perlenförmigem Granulat an den Dämmstoffhersteller geliefert und dort physikalisch umgeformt/aufgeschäumt und nachgearbeitet.

Zusammensetzung von silbergrauem expandiertem Polystyrol für blaugelb Sockeldämmprofile EPS für die Anwendungsbereiche dieser Konstruktionsplatten:

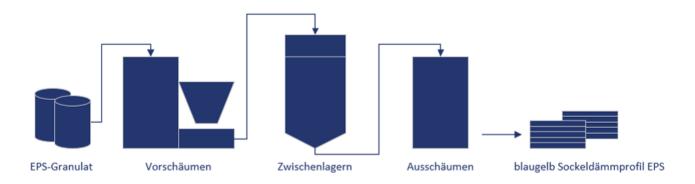
Anteil in Massen-%: 89 % Pentan (bezogen auf Massen-% im Rohstoff): 4,5 % Sonstige (wie z. B. Graphit) in Massen-%: 6,5 %

Das zum Aufschäumen zugesetzte Pentan ist ein C5-Kohlenwasserstoff. Während der Fertigungs- und

Lagerprozesse wird das Pentan abgebaut. Zur Verbesserung der Dämmleistung wird dem Produkt Graphit oder alternativ Ruß beigemengt. Dadurch wird das Reflektionsund Absorptionsverhalten der Wärmestrahlung verändert, wodurch die Dämmleistung der Produkte bei geringen Schichtdicken verbessert wird.

Als Flammschutzmittel wird Polymer-FR verwendet. Polymer-FR ist ein bromiertes Styrol-Butadien-Copolymerisat.

Das Produkt/Erzeugnis/mindestens ein Teilerzeugnis enthält Stoffe der ECHA-Liste der für eine Zulassung in Frage kommenden besonders besorgniserregenden Stoffe (en: Substances of Very High Concern – SVHC) (10.06.2022) oberhalb von 0,1 Massen-%: nein.


Das Produkt/Erzeugnis/mindestens ein Teilerzeugnis enthält weitere CMR-Stoffe der Kategorie 1A oder 1B, die nicht auf der Kandidatenliste stehen, oberhalb von 0,1 Massen-% in mindestens einem Teilerzeugnis: nein.

Dem vorliegenden Bauprodukt wurden Biozidprodukte zugesetzt oder es wurde mit Biozidprodukten behandelt (es handelt sich damit um eine behandelte Ware im Sinne der Biozidprodukteverordnung (EU) Nr. 528/2012): nein.

### 2.6 Herstellung

Beim Vorschäumen wird das EPS-Granulat anhand des enthaltenen Treibmittels Pentan und mit Hilfe von Wasserdampf auf die fertige Perlengröße vorgeschäumt. Anschließend werden die vorgeschäumten EPS-Perlen einige Zeit in belüfteten Silos zwischengelagert.

Nach der gewissen Ablagerungszeit wird das vorgeschäumte EPS in den Formteileautomaten befördert, wo die Perlen unter Druck und wiederum durch Zufuhr von Wasserdampf verschweißt werden. Nach der Abkühlphase werden die blaugelb Sockeldämmprofile EPS entformt, wo sie zum Abschluss noch einer Qualitätskontrolle unterzogen werden.



### 2.7 Umwelt und Gesundheit während der Herstellung

blaugelb Sockeldämmprofile EPS sind nach dem Cradle to Cradle® (C2C) Silver Standard zertifiziert. Im Zertifizierungsprozess werden die Module Materialgesundheit, Materialkreislauf, erneuerbare Energie, Wassermanagement und soziale Verantwortung berücksichtigt und jeweils eine Material- und Prozessbewertung erstellt (Details zum Zertifikat siehe *EPEA GmbH*).

### 2.8 Produktverarbeitung/Installation

Die Installation der blaugelb Sockeldämmprofile EPS beinhaltet die folgenden Schritte:

Zuschnitt

- Abdichtung
- Verschraubung

Die Verschraubung erfolgt mittels blaugelb Rahmenfixschraube FK-T30. Die vertikale punktuelle Krafteinleitung in den Verankerungsgrund wird mit Hilfe des blaugelb Montageklotz realisiert.

Die horizontalen Kräfte werden mit dem blaugelb Montagewinkel und der vierfachen Verschraubung in das blaugelb Sockeldämmprofil EPS und mit der zweifachen Verschraubung zum Verankerungsgrund mit der blaugelb Rahmenfixschraube FK-T30 abgetragen. Horizontale Lastwertprüfungen im Gesamtensemble sind vorhanden.



Die Schwalbenschwanzverbindung optimiert den Verschnitt, während die eigentliche Profillänge von 1.175 mm – 1.200 mm sich für Transport und Lagerung (Europalette) eignet.

### 2.9 Verpackung

Die blaugelb Sockeldämmprofile EPS werden mit Wickelfolie gebündelt und zum Schutz vor Sonneneinstrahlung in Kunststofffolie verpackt. Die Auslieferung erfolgt auf handelsüblichen Euro-Paletten mit Karton Einlegern.

### 2.10 Nutzungszustand

Für die Herstellung von blaugelb Sockeldämmprofilen EPS aus einem hochverdichteten EPS (expandiertes Polystyrol) wird Rohstoffgranulat verwendet. Ein Großteil des für die Schaumstruktur notwendigen Treibmittels Pentan entweicht während des Herstellungsprozesses.

Eine Emission während der Lager- und Nutzungsphase ist abhängig von verschiedenen Parametern wie der Schaumstruktur, der Umgebungstemperatur, der offenen Oberfläche und dem Luftwechsel im eingebauten Zustand.

Alle eingesetzten Stoffe sind im Einbauzustand alterungsbeständig und feuchtigkeitsresistent, wodurch die Dämmleistung sowie die mechanischen Eigenschaften während der gesamten Nutzungsdauer unverändert erhalten bleiben.

Es ist dimensionsstabil und nach *GEV EMICODE* EC1 Plus geprüft.

Die blaugelb Sockeldämmprofile EPS weisen eine hohe Duktilität, Druckfestigkeit und Biegesteifigkeit zur Lastaufnahme auf.

### 2.11 Umwelt und Gesundheit während der Nutzung

EPS (expandiertes Polystyrol)-Produkte sind seit über 50 Jahren im Einsatz. Negative Auswirkungen auf Menschen, Tiere und Umwelt sind nicht bekannt.

### 2.12 Referenz-Nutzungsdauer

Die Nutzungsdauerangaben beschreiben die innerhalb des Prognoseszenarios angenommene Zeitspanne, nach der ein heute eingebautes Bauteil vermutlich ausgetauscht werden wird. Die Angaben beruhen sowohl auf Literaturangaben als auch auf Erfahrungswerten von Experten. Hierbei wurden neben technisch-funktionalen Aspekten auch Erneuerungen auf Grund gesetzlicher Anforderungen sowie ästhetisch bedingte Aspekte in den Angaben berücksichtigt.

Die Nutzungsdauer für blaugelb Sockeldämmprofile EPS auf Basis von hochverdichtetem EPS (expandiertes Polystyrol) beträgt über 50 Jahre.

Die aufgeführten Nutzungsdauern sind der BBSR-Tabelle 'Nutzungsdauern von Bauteilen zur Lebenszyklusanalyse nach Bewertungssystem Nachhaltiges Bauen (BNB)' des Bundesinstituts für Bau-, Stadt- und Raumforschung im Bundesamt für Bauwesen und Raumordnung (BBSR) entnommen.

### 2.13 Außergewöhnliche Einwirkungen Brand

*DIN 4102-1*: Baustoffklasse B2, normal entflammbar, kein brennendes Abtropfen.

### **Brandschutz**

| Bezeichnung                                       | Wert                         |
|---------------------------------------------------|------------------------------|
| Baustoffklasse nach DIN 4102-1                    | B2 - normal<br>entflammbar   |
| Brennendes Abtropfen                              | kein brennendes<br>Abtropfen |
| Rauchgasentwicklung EURO – Klasse nach EN 13501-1 | Е                            |

### Wasser

Hochverdichtetes EPS (expandiertes Polystyrol) ist chemisch neutral, nicht wasserlöslich und gibt keine wasserlöslichen Stoffe ab, die zu einer Verunreinigung des Grundwassers, der Flüsse und Meere führen könnten.

Wegen ihrer geschlossenen Zellstruktur können blaugelb Sockeldämmprofile EPS aus einem hochverdichteten EPS i. d. R. auch bei erheblichem Feuchtigkeitsgehalt im vorhandenen Profilaufbau verbleiben. Die Dämmwirkung bleibt erhalten.

### Mechanische Zerstörung

Angaben zum Verhalten des Produktes, einschließlich möglicher Folgen auf die Umwelt bei unvorhergesehener mechanischer Zerstörung, sind nicht relevant.

### 2.14 Nachnutzungsphase

Recycling von EPS-Hartschaum aus Produktionsabfällen funktioniert seit vielen Jahren und hat sich sehr gut bewährt. Produktionsrückstände infolge von Blockbesäumung, Zuschnitten oder Randprofilen werden in den Produktionsstätten wieder eingesetzt.

Nach der Nutzung können EPS-Dämmstoffe einem stofflichen Recycling zugeführt oder thermisch verwertet werden.

### 2.15 Entsorgung

Die Produkte enthalten keine Schadstoffe die die Recyclingfähigkeit einschränken würden.

Sockeldämmprofile EPS, die der Nachnutzungsphase nach 2.14 nicht zugeführt werden können, enthalten ein großes energetisches Potenzial, das in der energetischen Verwertung genutzt werden kann. Die Energie von 1 kg EPS entspricht dem von ca. 1,1 Liter Heizöl.

Zusätzlich kann die anfallende Abwärme bei der Verwertung in einem konventionellen Müllheizkraftwerk sowohl zur Strom- als auch zur Fernwärmeerzeugung genutzt werden. Die Hersteller empfehlen als Entsorgungsweg möglichst eine stoffliche bzw. mindestens eine energetische Verwertung des Produkts.

Abfallschlüssel nach Europäischem Abfallkatalog (Abfallverzeichnisverordnung (*AVV*)): 17 06 04 – Dämmmaterial mit Ausnahme desjenigen, das unter 17 06 01 und 17 06 03 fällt.

Die blaugelb Sockeldämmprofile EPS sind 100 % recyclebar und werden nach dem Abfallschlüssel 17 06 04 und 17 09 04 entsorgt.

## 2.16 Weitere Informationen www.meesenburg.de



### 3. LCA: Rechenregeln

### 3.1 Deklarierte Einheit

Die vorliegende Umwelt-Produktdeklaration bezieht sich auf eine deklarierte Einheit von 1 m³ blaugelb Sockeldämmprofile EPS, mit einer Rohdichte von 150 kg/m³.

### **Deklarierte Einheit**

| Bezeichnung         | Wert | Einheit           |
|---------------------|------|-------------------|
| Deklarierte Einheit | 1    | m <sup>3</sup>    |
| Rohdichte           | 150  | kg/m <sup>3</sup> |

Die deklarierte Einheit beinhaltet dabei das verkaufsfähige Endprodukt. blaugelb Sockeldämmprofile EPS werden in verschiedenen Abmessungen produziert. Die Datensammlung bezieht sich auf einen Jahresdurchschnitt und ist repräsentativ für 100 % der erzeugten Produkte. Aufgrund des homogenen Aufbaus der Produkte korreliert die Umweltwirkung der Produkte direkt mit deren Masse.

Die Befestigungen der blaugelb Produkte sind nicht Teil der Betrachtung.

### 3.2 Systemgrenze

Die Ökobilanz der blaugelb Dämmprodukte beinhaltet eine cradle-to-gate (Wiege bis zum Werkstor) Betrachtung mit den Modulen C1–C3 und Modul D (A1–A3, +C, +D). Die folgenden Lebenszyklusphasen werden in der Analyse berücksichtigt:

### Modul A1-A3 | Produktionsstadium

Das Produktionsstadium beinhaltet die Aufwendungen der Herstellung der eingesetzten Grundstoffe (EPS, Pentan, etc.), sowie der damit verbundenen Transporte der Rohstoffe. Innerhalb der Werksgrenzen werden die Prozessschritte Vorschäumen, Zwischenlagern, Ausschäumen, Block-Zwischenlagerung und Verarbeitung der Dämmprodukte betrachtet. Die thermische Energiebereitstellung am Standort erfolgt über Erdgas, elektrische Energie wird von der Photovoltaik-Anlage am Dach der Produktionshallen sowie vom regionalen Stromnetz bezogen. Auch die Produktion der zur Auslieferung der Produkte eingesetzten Verpackung ist in Modul A1–A3 erfasst.

### Modul C1 | Rückbau/Abriss

Für die Dämmprodukte wurde ein manueller Ausbau angenommen. Die damit verbundenen Aufwände sind vernachlässigbar, wodurch keine Umweltwirkungen aus dem Rückbau der Produkte deklariert werden.

Modul C2/1 | Transport zum stofflichen Recycling Modul C2 beinhaltet den Transport zur Abfallbehandlung. Für Szenario 1 wird der Transport via LKW über 100 km Transportdistanz angesetzt.

Modul C2/2 | Transport zur Energierückgewinnung Im Szenario 2, der energetischen Verwertung der Produkte wird der Transport via LKW über 50 km Transportdistanz angesetzt.

Modul C3/1 | Abfallbehandlung beim stofflichen Recycling Im Szenario 1 beinhaltet das Modul C3 die Zerkleinerung der Dämmprodukte als Ausgangsmaterial für das anschließende stoffliche Recycling. Jener Produktfluss, der das Modul D zum Recycling erreicht, verlässt das Produktsystem in C3.

### Modul C3/2 | Abfallbehandlung bei der Energierückgewinnung

Das Szenario 2 sieht eine energetische Verwertung der Dämmprodukte nach Ausbau aus dem Gebäude von 100 %

vor. Es wird angenommen, dass die Dämmprodukte am Lebensende in einer Müllverbrennungsanlage zur Erzeugung von Energie verwertet werden. Die Emissionen aus der Verbrennung sind dabei in Modul C3 deklariert. Basierend auf Informationen von Sphera (siehe *GaBi*) wird ein R1-Wert der Müllverbrennungsanlage von > 0,6 angenommen.

**Modul C4/1 | Entsorgung beim stofflichen Recycling**Das angesetzte Szenario 1 deklariert die stoffliche Verwertung der Dämmprodukte wodurch keine Umweltauswirkungen aus der Entsorgung der Produkte in C4 zu erwarten sind.

Modul C4/2 | Entsorgung bei der Energierückgewinnung Die Umweltlasten aus der energetischen Verwertung (Szenario 2) der deklarierten Produkte werden in Modul C3 deklariert. Somit sind keine Aufwände in Modul C4 zu deklarieren.

## Modul D/1 | Gutschriften und Lasten außerhalb der Systemgrenzen beim stofflichen Recycling

Im Modul D/1 wird ein 100-%-Recyclingszenario unter Berücksichtigung der Substitutionspotenziale von fossilem Polystyrol-Primärmaterial deklariert.

## Modul D/2 | Gutschriften und Lasten außerhalb der Systemgrenzen bei der Energierückgewinnung

Im Szenario 2 werden in Modul D die Substitutionspotenziale für Wärme und Strom aus der energetischen Verwertung des Produktes in Modul C3 in Form eines europäischen Durchschnittsszenarios beschrieben.

### 3.3 Abschätzungen und Annahmen

Bei Fehlen eines repräsentativen Hintergrunddatensatzes zur Abbildung der Umweltwirkung gewisser Rohstoffe werden Annahmen und Abschätzungen verwendet. Alle Annahmen sind durch eine detaillierte Dokumentation belegt und entsprechen einer, hinsichtlich der verfügbaren Datenbasis, bestmöglichen Abbildung der Realität.

### 3.4 Abschneideregeln

Es sind alle relevanten In- und Outputs, für die Daten vorliegen, im Ökobilanzmodell enthalten. Datenlücken werden bei verfügbarer Datenbasis mit konservativen Annahmen von Durchschnittsdaten bzw. generischen Daten gefüllt und sind entsprechend dokumentiert. Es wurden lediglich Daten mit einem Beitrag von weniger als 1 % abgeschnitten. Das Vernachlässigen dieser Daten ist durch die Geringfügigkeit der zu erwartenden Wirkung zu rechtfertigen. Somit wurden keine Prozesse, Materialien oder Emissionen vernachlässigt, von welchen ein signifikanter Beitrag zur Umweltwirkung der betrachteten Produkte bekannt ist.

Die Gesamtsumme der vernachlässigten Input-Flüsse beträgt nicht mehr als 5 % des Energie- und Masseeinsatzes.

### 3.5 Hintergrunddaten

Zur Berechnung der Ökobilanz wurde die *GaBi* 2022.2-Hintergrunddatenbank in der *GaBi*-Software-Version 10 verwendet.

### 3.6 Datenqualität

Die Sammlung der Daten erfolgt über spezifisch für die Branche angepasste Datenerhebungsbögen. Rückfragen werden in einem iterativen Prozess schriftlich via E-Mail, telefonisch bzw. in Web-Abstimmungsgesprächen geklärt. Durch die intensive Diskussion zwischen dem Ökobilanzierer Daxner & Merl und der Meesenburg Großhandel KG zur möglichst realitätsnahen Abbildung der Stoff- und Energieflüsse



zwischen den Produktionsstandorten ist von einer hohen Qualität der erhobenen Vordergrunddaten auszugehen. Es wurde ein konsistentes und einheitliches

Berechnungsverfahren gemäß ISO 14044 angewandt. Bei der Auswahl der Hintergrunddaten wird auf die technologische, geographische und zeitbezogene Repräsentativität der Datengrundlage geachtet. Bei Fehlen spezifischer Daten wird auf generische Datensätze bzw. einen repräsentativen Durchschnitt zurückgegriffen. Die eingesetzten GaBi-Hintergrunddatensätze sind nicht älter als zehn Jahre.

### 3.7 Betrachtungszeitraum

Im Rahmen der Sammlung der Vordergrunddaten wurde die Sachbilanz für die deklarierten Produkte für das Produktionsjahr 2021 erhoben. Alle Daten beruhen auf den eingesetzten und produzierten Jahresmengen.

### 3.8 Geographische Repräsentativität

Land oder Region, in dem/r das deklarierte Produktsystem hergestellt und ggf. genutzt sowie am Lebensende behandelt wird: EU-27 Mitgliedsstaaten

### 3.9 Allokation

In der Produktion entstehen keine Nebenprodukte, wodurch keine Co-Produkt-Allokation angewandt wurde.

Die Aufwände für die Zerkleinerung der ausgebauten Produkte im End-of-Life werden als Teil der Systemgrenze betrachtet und in Modul C3 deklariert. Umweltpotenziale aus dem Recycling der Produkte werden nach dem Erreichen des End-of-Waste-Status in Modul D berücksichtigt.

### 3.10 Vergleichbarkeit

Grundsätzlich ist eine Gegenüberstellung oder die Bewertung von EPD-Daten nur möglich, wenn alle zu vergleichenden Datensätze nach *EN 15804* erstellt wurden und der Gebäudekontext bzw. die produktspezifischen Leistungsmerkmale berücksichtigt werden.

Zur Berechnung der Ökobilanz wurde die *GaBi*-Hintergrunddatenbank Version 2022.2, in der *GaBi*-Software-Version 10 verwendet.

### 4. LCA: Szenarien und weitere technische Informationen

### Charakteristische Produkteigenschaften biogener Kohlenstoff

Das deklarierte Produkt enthält keinen biogenen Kohlenstoff.

## Informationen zur Beschreibung des biogenen Kohlenstoffgehalts am Werkstor

| Bezeichnung                                           | Wert | Einheit |
|-------------------------------------------------------|------|---------|
| Biogener Kohlenstoff im Produkt                       | -    | kg C    |
| Biogener Kohlenstoff in der zugehörigen<br>Verpackung | 0,64 | kg C    |

Der in der Verpackung gespeicherte Kohlenstoff wurde als "CO<sub>2</sub>-neutral" berücksichtigt. Das bedeutet, dass der Speichereffekt durch den in der Verpackung gebundenen Kohlenstoff nicht in die Berechnung eingeht und als theoretisch sofort emittiert betrachtet wird.

## Wiederverwendungs-, Rückgewinnungs- und Recyclingpotential (D), relevante Szenarioangaben

| Bezeichnung                             | Wert | Einheit |
|-----------------------------------------|------|---------|
| Nettofluss (D/1, stoffliches Recycling) | 154  | kg/m³   |

End-of-Life Szenario 1:

Das vorliegende Szenario beinhaltet eine Recyclingquote von 100 %.

blaugelb Produkte enthalten keine gefährlichen Substanzen, die die Recyclingfähigkeit verhindern könnten. Sie können mit geeignetem Gerät zerkleinert und damit für die zukünftige Nutzung aufbereitet werden. Die technische Machbarkeit der Wiederaufbereitung ist somit gewährleistet.

Da es sich um neue Produkte handelt, die für eine möglichst lange Nutzung im Gebäude entwickelt wurden, wurden bislang keine Produkte rückgebaut. Eine stoffliche Verwertung wird daher als realistischer Anwendungsfall eingestuft.

Das End-of-Life-Szenario ist im jeweiligen Anwendungskontext gegebenenfalls anzupassen.

Die aus dem Recycling der Produkte entstehenden Potenziale werden in Modul D berücksichtigt. Es wird angenommen, dass das aufbereitete Material die Erzeugung von Primär-PS ersetzen kann. Zur Quantifizierung des Substitutionspotenzials am Lebensende der Produkte und der Produktionsreste zum externen Recycling wurde der Nettomaterialfluss ins Modul D berücksichtigt ("Nettoflussberechnung").

### Einbau ins Gebäude (A5)

Das End-of-Life der Verpackungsmaterialien wird nicht in Modul A5 deklariert.

| Bezeichnung         | Wert | Einheit |
|---------------------|------|---------|
| Verpackung (Folie)  | 0,3  | kg      |
| Verpackung (Holz)   | 1,2  | kg      |
| Verpackung (Karton) | 0,3  | kg      |

### Ende des Lebenswegs (C1-C4)

Für das Lebensende der Produkte wird ein Recyclingszenario nach dem Ausbau als wahrscheinliches Szenario angenommen.

| Bezeichnung                     | Wert | Einheit |
|---------------------------------|------|---------|
| Getrennt gesammelt (EPS)        | 150  | kg      |
| Zum Recycling (C3/1)            | 150  | kg      |
| Zur Energierückgewinnung (C3/2) | 150  | kg      |

### End-of-Life Szenario 2:

Durch die energetische Verwertung der Dämmprodukte in einer Müllverbrennungsanlage werden thermische und elektrische Energie erzeugt. Daraus entstehende Potenziale werden in Modul D durch die Substitution von thermischer Energie aus Erdgas und dem europäischen Durchschnitts-Strom-Mix berücksichtigt. Dies bedeutet, dass angenommen wird, dass die durch die energetische Verwertung des Produktes erzeugte thermische Energie, jene aus Erdgas bzw. die erzeugte elektrische Energie jene aus dem regionalen Strom-Mix ersetzen kann.



### LCA: Ergebnisse

Die folgende Tabelle enthält die Ökobilanzergebnisse für eine deklarierte Einheit von 1 m³ blaugelb Sockeldämmprofile EPS (150 kg/m³).

### ANGABE DER SYSTEMGRENZEN (X = IN ÖKOBILANZ ENTHALTEN; ND = MODUL ODER INDIKATOR NICHT DEKLARIERT; MNR = MODUL NICHT RELEVANT)

| Produktionsstadium |           |             | 1                                                 | ım der<br>ntung |                                  | Nutzungsstadium |           |        |            |                                                     |                                                    | En             | tsorgun   | gsstadi          |             | Gutschriften<br>und Lasten<br>außerhalb der<br>Systemgrenze          |
|--------------------|-----------|-------------|---------------------------------------------------|-----------------|----------------------------------|-----------------|-----------|--------|------------|-----------------------------------------------------|----------------------------------------------------|----------------|-----------|------------------|-------------|----------------------------------------------------------------------|
| Rohstoffversorgung | Transport | Herstellung | Transport vom<br>Hersteller zum<br>Verwendungsort | Montage         | Nutzung/Anwendung                | Instandhaltung  | Reparatur | Ersatz | Erneuerung | Energieeinsatz für<br>das Betreiben<br>des Gebäudes | Wassereinsatz für<br>das Betreiben<br>des Gebäudes | Rückbau/Abriss | Transport | Abfallbehandlung | Beseitigung | Wiederverwendungs-,<br>Rückgewinnungs-<br>oder<br>Recyclingpotenzial |
| A1                 | A2        | А3          | A4                                                | <b>A5</b>       | B1 B2 B3 B4 B5 B6 B7 C1 C2 C3 C4 |                 |           |        |            |                                                     | D                                                  |                |           |                  |             |                                                                      |
| Х                  | Х         | Х           | MND                                               | MND             | MND                              | MND             | MNR       | MNR    | MNR        | MND                                                 | MND                                                | Х              | Х         | Х                | Х           | Х                                                                    |

## ERGEBNISSE DER ÖKOBILANZ – UMWELTAUSWIRKUNGEN nach EN 15804+A2: 1 m³ blaugelb Sockeldämmprofile EPS (150 kg/m³)

| kg/III )       |                                     |          |    |          |          |          |          |    |           |           |
|----------------|-------------------------------------|----------|----|----------|----------|----------|----------|----|-----------|-----------|
| Indikator      | Einheit                             | A1-A3    | C1 | C2/1     | C2/2     | C3/1     | C3/2     | C4 | D/1       | D/2       |
| GWP-total      | kg CO <sub>2</sub> -Äq.             | 6,02E+02 | 0  | 9,09E-01 | 4,54E-01 | 1,12E+01 | 5,06E+02 | 0  | -3,54E+02 | -2,02E+02 |
| GWP-fossil     | kg CO <sub>2</sub> -Äq.             | 5,94E+02 | 0  | 9,03E-01 | 4,51E-01 | 1,11E+01 | 5,06E+02 | 0  | -3,52E+02 | -2,01E+02 |
| GWP-biogenic   | kg CO <sub>2</sub> -Äq.             | 8E+00    | 0  | 0        | 0        | 9,96E-02 | 1,51E-02 | 0  | -1,76E+00 | -1,03E+00 |
| GWP-luluc      | kg CO <sub>2</sub> -Äq.             | 8,51E-02 | 0  | 6,07E-03 | 3,03E-03 | 2,34E-03 | 4,92E-04 | 0  | -3,39E-02 | -2,22E-02 |
| ODP            | kg CFC11-Äq.                        | 5,05E-09 | 0  | 8,84E-14 | 4,42E-14 | 1,62E-10 | 2,01E-11 | 0  | -4,66E-10 | -1,37E-09 |
| AP             | mol H+-Äq.                          | 8,53E-01 | 0  | 3,01E-03 | 1,5E-03  | 2,43E-02 | 4,43E-02 | 0  | -4,95E-01 | -2,65E-01 |
| EP-freshwater  | kg P-Äq.                            | 8,92E-03 | 0  | 3,22E-06 | 1,61E-06 | 3,23E-05 | 4,68E-06 | 0  | -4,25E-04 | -2,78E-04 |
| EP-marine      | kg N-Äq.                            | 2,77E-01 | 0  | 1,38E-03 | 6,88E-04 | 5,45E-03 | 9,65E-03 | 0  | -1,35E-01 | -7,19E-02 |
| EP-terrestrial | mol N-Äq.                           | 2,68E+00 | 0  | 1,54E-02 | 7,71E-03 | 5,72E-02 | 2,08E-01 | 0  | -1,46E+00 | -7,7E-01  |
| POCP           | kg NMVOC-<br>Äq.                    | 5,53E+00 | 0  | 2,7E-03  | 1,35E-03 | 1,47E-02 | 2,85E-02 | 0  | -5,14E-01 | -2,01E-01 |
| ADPE           | kg Sb-Äq.                           | 6,17E-05 | 0  | 9,08E-08 | 4,54E-08 | 3,01E-06 | 4,86E-07 | 0  | -4,11E-05 | -3,05E-05 |
| ADPF           | MJ                                  | 1,61E+04 | 0  | 1,18E+01 | 5,91E+00 | 2,01E+02 | 5,47E+01 | 0  | -1,12E+04 | -3,42E+03 |
| WDP            | m <sup>3</sup> Welt-Äq.<br>entzogen | 1,81E+01 | 0  | 1,01E-02 | 5,04E-03 | 2,52E+00 | 4,1E+01  | 0  | -3,72E+01 | -2,15E+01 |

GWP = Globales Erwärmungspotenzial; ODP = Abbaupotenzial der stratosphärischen Ozonschicht; AP = Versauerungspotenzial von Boden und Wasser; EP = Eutrophierungspotenzial; POCP = Bildungspotenzial für troposphärisches Ozon; ADPE = Potenzial für die Verknappung von abiotischen Ressourcen – nicht fossile Ressourcen (ADP – Stoffe); ADPF = Potenzial für die Verknappung abiotischer Ressourcen – fossile Brennstoffe (ADP – fossile Energieträger); WDP = Wasser-Entzugspotenzial (Benutzer)

### ERGEBNISSE DER ÖKOBILANZ – INDIKATOREN ZUR BESCHREIBUNG DES RESSOURCENEINSATZES nach EN 15804+A2: 1 m³ blaugelb Sockeldämmprofile EPS (150 kg/m³)

| Indikator | Einheit        | A1-A3    | C1 | C2/1     | C2/2     | C3/1     | C3/2     | C4 | D/1       | D/2       |
|-----------|----------------|----------|----|----------|----------|----------|----------|----|-----------|-----------|
| PERE      | MJ             | 5,09E+02 | 0  | 8,19E-01 | 4,1E-01  | 1,11E+02 | 1,29E+01 | 0  | -2,61E+02 | -9,44E+02 |
| PERM      | MJ             | 2,34E+01 | 0  | 0        | 0        | 0        | 0        | 0  | 0         | 0         |
| PERT      | MJ             | 5,33E+02 | 0  | 8,19E-01 | 4,1E-01  | 1,11E+02 | 1,29E+01 | 0  | -2,61E+02 | -9,44E+02 |
| PENRE     | MJ             | 9,32E+03 | 0  | 1,19E+01 | 5,93E+00 | 7,1E+03  | 6,95E+03 | 0  | -1,12E+04 | -3,42E+03 |
| PENRM     | MJ             | 6,91E+03 | 0  | 0        | 0        | -6,9E+03 | -6,9E+03 | 0  | 0         | 0         |
| PENRT     | MJ             | 1,62E+04 | 0  | 1,19E+01 | 5,93E+00 | 2,01E+02 | 5,47E+01 | 0  | -1,12E+04 | -3,42E+03 |
| SM        | kg             | 2,42E-01 | 0  | 0        | 0        | 0        | 0        | 0  | 1,54E+02  | 0         |
| RSF       | MJ             | 0        | 0  | 0        | 0        | 0        | 0        | 0  | 0         | 0         |
| NRSF      | MJ             | 0        | 0  | 0        | 0        | 0        | 0        | 0  | 0         | 0         |
| FW        | m <sup>3</sup> | 1,49E+00 | 0  | 9,46E-04 | 4,73E-04 | 1,06E-01 | 9,61E-01 | 0  | -1,74E+00 | -9,08E-01 |
|           |                |          |    |          |          |          |          |    |           |           |

PERE = Erneuerbare Primärenergie als Energieträger; PERM = Erneuerbare Primärenergie zur stofflichen Nutzung; PERT = Total erneuerbare Primärenergie; PENRE = Nicht-erneuerbare Primärenergie als Energieträger; PENRM = Nicht-erneuerbare Primärenergie zur stofflichen Nutzung; PENRT = Total nicht erneuerbare Primärenergie; SM = Einsatz von Sekundärstoffen; RSF = Erneuerbare Sekundärbrennstoffe; NRSF = Nicht-erneuerbare Sekundärbrennstoffe; FW = Nettoeinsatz von Süßwasserressourcen

### ERGEBNISSE DER ÖKOBILANZ –ABFALLKATEGORIEN UND OUTPUTFLÜSSE nach EN 15804+A2:

| i ili bidagcib c | ockerdanini | prome Er c | (100 kg/iii | ,        |          |          |          |    |           |           |
|------------------|-------------|------------|-------------|----------|----------|----------|----------|----|-----------|-----------|
| Indikator        | Einheit     | A1-A3      | C1          | C2/1     | C2/2     | C3/1     | C3/2     | C4 | D/1       | D/2       |
| HWD              | kg          | 2E-06      | 0           | 6,28E-11 | 3,14E-11 | 1,74E-08 | 5,15E-09 | 0  | -7,29E-07 | -4,63E-07 |
| NHWD             | kg          | 1,24E+01   | 0           | 1,93E-03 | 9,67E-04 | 1,51E-01 | 1,83E+00 | 0  | -2,64E+00 | -1,73E+00 |
| RWD              | kg          | 7,33E-02   | 0           | 2,2E-05  | 1,1E-05  | 3,21E-02 | 3,31E-03 | 0  | -4,16E-02 | -2,71E-01 |



| CRU | kg | 0 | 0 | 0 | 0 | 0       | 0        | 0 | 0 | 0 |
|-----|----|---|---|---|---|---------|----------|---|---|---|
| MFR | kg | 0 | 0 | 0 | 0 | 1,5E+02 | 0        | 0 | 0 | 0 |
| MER | kg | 0 | 0 | 0 | 0 | 0       | 0        | 0 | 0 | 0 |
| EEE | MJ | 0 | 0 | 0 | 0 | 0       | 9,09E+02 | 0 | 0 | 0 |
| EET | MJ | 0 | 0 | 0 | 0 | 0       | 1,62E+03 | 0 | 0 | 0 |

HWD = Gefährlicher Abfall zur Deponie; NHWD = Entsorgter nicht gefährlicher Abfall; RWD = Entsorgter radioaktiver Abfall; CRU = Komponenten für die Wiederverwendung; MFR = Stoffe zum Recycling; MER = Stoffe für die Energierückgewinnung; EEE = Exportierte Energie – elektrisch; EET = Exportierte Energie – thermisch

### ERGEBNISSE DER ÖKOBILANZ – zusätzliche Wirkungskategorien nach EN 15804+A2-optional: 1 m³ blaugelb Sockeldämmprofile EPS (150 kg/m³)

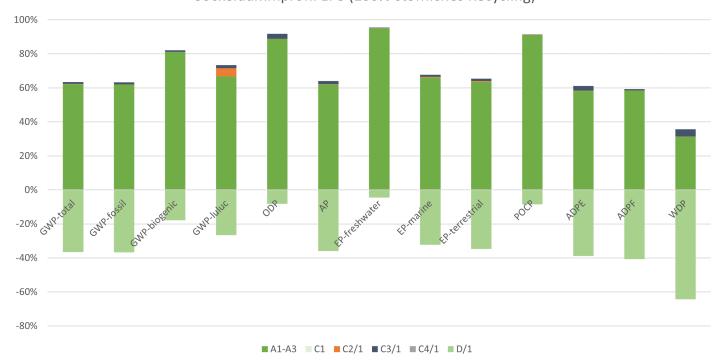
| Indikator | Einheit         | A1-A3 | C1 | C2/1 | C2/2 | C3/1 | C3/2 | C4 | D/1 | D/2 |
|-----------|-----------------|-------|----|------|------|------|------|----|-----|-----|
| PM        | Krankheitsfälle | ND    | ND | ND   | ND   | ND   | ND   | ND | ND  | ND  |
| IR        | kBq U235-Äq.    | ND    | ND | ND   | ND   | ND   | ND   | ND | ND  | ND  |
| ETP-fw    | CTUe            | ND    | ND | ND   | ND   | ND   | ND   | ND | ND  | ND  |
| HTP-c     | CTUh            | ND    | ND | ND   | ND   | ND   | ND   | ND | ND  | ND  |
| HTP-nc    | CTUh            | ND    | ND | ND   | ND   | ND   | ND   | ND | ND  | ND  |
| SQP       | SQP             | ND    | ND | ND   | ND   | ND   | ND   | ND | ND  | ND  |

PM = Potenzielles Auftreten von Krankheiten aufgrund von Feinstaubemissionen; IR = Potenzielle Wirkung durch Exposition des Menschen mit U235; ETP-fw = Potenzielle Toxizitätsvergleichseinheit für Ökosysteme; HTP-c = Potenzielle Toxizitätsvergleichseinheit für den Menschen (kanzerogene Wirkung); HTP-nc = Potenzielle Toxizitätsvergleichseinheit für den Menschen (nicht kanzerogene Wirkung); SQP = Potenzieller Bodenqualitätsindex

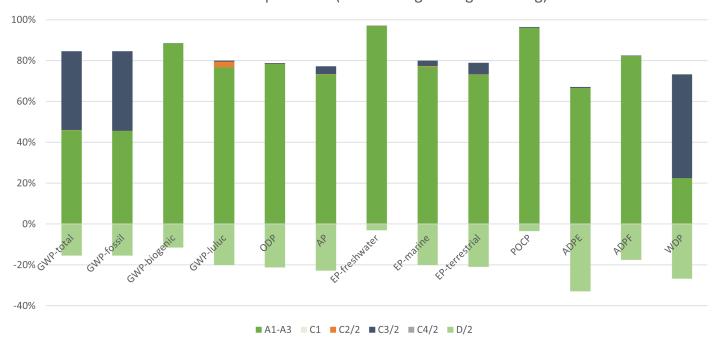
Die zusätzlichen und optionalen Wirkungskategorien nach *EN 15804*+A2 werden nicht deklariert, da die Unsicherheit dieser Indikatoren als hoch einzustufen ist.

Einschränkungshinweis 1 – gilt für den Indikator "Potenzielle Wirkung durch Exposition des Menschen mit U235": Diese Wirkungskategorie behandelt hauptsächlich die mögliche Wirkung einer ionisierenden Strahlung geringer Dosis auf die menschliche Gesundheit im Kernbrennstoffkreislauf. Sie berücksichtigt weder Auswirkungen, die auf mögliche nukleare Unfälle und berufsbedingte Exposition zurückzuführen sind, noch auf die Entsorgung radioaktiver Abfälle in unterirdischen Anlagen. Die potenzielle vom Boden, von Radon und von einigen Baustoffen ausgehende ionisierende Strahlung wird ebenfalls nicht von diesem Indikator gemessen.

Einschränkungshinweis 2 – gilt für die Indikatoren: "Potenzial für die Verknappung abiotischer Ressourcen - nicht fossile Ressourcen", "Potenzial für die Verknappung abiotischer Ressourcen - fossile Brennstoffe", "Wasser-Entzugspotenzial (Benutzer)", "Potenzielle Toxizitätsvergleichseinheit für den Menschen - kanzerogene Wirkung", "Potenzielle Toxizitätsvergleichseinheit für den Menschen - nicht kanzerogene Wirkung", "Potenzieller Bodenqualitätsindex": Die Ergebnisse dieses Umweltwirkungsindikators müssen mit Bedacht angewendet werden, da die Unsicherheiten bei diesen Ergebnissen hoch sind oder da es mit dem Indikator nur begrenzte Erfahrungen gibt.


### 6. LCA: Interpretation

Die folgende Interpretation enthält eine Zusammenfassung der Ökobilanzergebnisse, bezogen auf eine deklarierte Einheit von


1 m³ blaugelb Sockeldämmprofile EPS.



## Relative Beiträge der verschiedenen Lebenszyklusphasen des blaugelb Sockeldämmprofil EPS (100% stoffliches Recycling)



## Relative Beiträge der verschiedenen Lebenszyklusphasen des blaugelb Sockeldämmprofil EPS (100% Energierückgewinnung)



Stellt man die einzelnen Phasen gegenüber, so ergibt sich bei den meisten Indikatoren eine klare Dominanz der **Produktionsphase** (Module A1–A3).

Die Umweltwirkungen der Produktionsphase sind hauptsächlich von der Lieferkette des zugekauften Vormaterials dominiert. Einzig beim GWP-total, GWP-fossil und WDP in Szenario 2 ist auch ein deutlicher Einfluss der energetischen Verwertung der Dämmprodukte erkennbar (Modul C3/2).

In Szenario 1 kann aufgrund der Recyclingfähigkeit der Produkte, durch das ausgebaute Material am **Lebensende** die

Erzeugung von fossilem Primär-Polystyrol unter der Voraussetzung, dass das Sekundär-EPS die Qualitätsanforderungen im nachfolgenden Produktsystem erfüllt, vermieden werden. Das Modul D/1 zeigt die Recyclingpotenziale von fossilem Polystyrol am Lebensende der Produkte. Da in der Produktion des Polystyrols kein sekundäres EPS als Inputmaterial eingesetzt wird, ergibt sich daraus ein sehr hoher Nettofluss ins Modul D/1. Daraus resultieren hohe Potenziale aus der Substitution von Primär-PS ("credits").



Die Umweltwirkungen aus dem **Transport zum Recycling** (Modul C2/1) und der **Zerkleinerung** der Dämmprodukte als Ausgangsmaterial für das anschließende stoffliche Recycling (C3/1) tragen zu einem geringen Anteil zur Umweltauswirkung des Produktes bei.

In Szenario 2 werden das GWP-total, GWP-fossil und das WDP durch die direkten Emissionen der **Verbrennungsanlage** sowie durch den Wassereinsatz für die Dampferzeugung beeinflusst. Modul D/2 zeigt die Substitutionspotenziale aus der Energierückgewinnung.

Die Nutzung der in den Dämmprodukten gespeicherten Energie kann Emissionen aus der Verwendung (hauptsächlich) fossiler Energieträger vermeiden.

Der **Transport zur thermischen Verwertung** (Modul C2/2) trägt zu einem geringen Anteil zur Umweltauswirkung des Produktes bei.

Zusammenfassend können die vorgelagerten Umweltauswirkungen aus der Produktion des Einsatzmaterials sowie der Erdgaseinsatz mit den daraus resultierenden direkten Emissionen als wesentliche Stellschrauben des Umweltprofils der blaugelb-Produkte identifiziert werden.

Aufgrund des homogenen Aufbaus der Produkte korreliert die Umweltwirkung der Produkte direkt mit deren Masse.

### 7. Nachweise

blaugelb Sockeldämmprofile EPS sind nach dem Cradle to Cradle® (C2C) Silver Standard zertifiziert. Im Zertifizierungsprozess werden die Module Materialgesundheit, Materialkreislauf, erneuerbare Energie, Wassermanagement und soziale Verantwortung berücksichtigt.

Prüfinstitut: EPEA GmbH - Part of Drees & Sommer

Zertifikatsnummerr: 5801

Ausstellungsdatum: 3. November 2022

Ablaufdatum: 30. Juni 2024

### 7.1 VOC-Emissionen

Wie alle EPS-Produkte können Dämmplatten aus dem Rohstoff Neopor<sup>®</sup> Plus für Innenraum-Anwendungen verwendet werden, jedoch sind sie in der Regel nicht direkt der Raumluft ausgesetzt, sondern von einer Deckschicht abgedeckt. Im Rahmen einer europäischen Studie wurden Emissionen von EPS-Dämmplatten anhand von 12 verschiedenen Arten von EPS-Rohstoffen gemessen.

Die Messungen nach *CEN TS 16516* und *ISO 16000-3,-6,-9* und *-11* wurden von Eurofins im April 2016 durchgeführt. Die geprüften Dämmstoffe erfüllen die Anforderungen des *AgBB*-Schemas für die Verwendung von Bauprodukten in Innenräumen. Nach der französischen VOC-Verordnung sind die geprüften Dämmstoffe mit A+ zu bewerten.

| Bezeichnung                       | Wert  | Einheit           |  |
|-----------------------------------|-------|-------------------|--|
| AgBB-Ergebnissüberblick (28 Tage) | 25    | µg/m³             |  |
| TVOC (C6 - C16) (3 Tage)          | 72    | μg/m <sup>3</sup> |  |
| R (dimensionslos)                 | 0,084 | -                 |  |
| Kanzerogene                       | 1     | μg/m <sup>3</sup> |  |

### 7.2 Auslaugung

Das Auslaugverhalten ist für Dämmplatten aus dem Rohstoff Neopor<sup>®</sup> Plus nicht relevant.

### 8. Literaturhinweise

### Normen

### **DIN 4102-1**

DIN 4102-1:1998-05, Brandverhalten von Baustoffen und Bauteilen – Teil 1: Baustoffe; Begriffe, Anforderungen und Prüfungen, MFPA Leipzig Prüf-, und Überwachungs- und Zertifizierungsstelle für Baustoffe.

### **DIN 4108**

DIN 4108-10:2021-11, Wärmeschutz und Energie-Einsparung in Gebäude – Anwendungsbezogene Anforderungen an Wärmedämmstoffe.

### EN 826

DIN EN 826:2013-05, Wärmedämmstoffe für das Bauwesen - Bestimmung des Verhaltens bei Druckbeanspruchung.

### EN 1603

DIN EN 1603:2013-05, Wärmedämmstoffe für das Bauwesen – Bestimmung der Dimensionsstabilität im Normklima (23 °C/ 50 % relative Luftfeuchte).

### EN 1604

DIN EN 1604:2013-05, Wärmedämmstoffe für das Bauwesen – Bestimmung der Dimensionsstabilität bei definierten Temperaturen- und Feuchtebedingungen.

### EN 1605

DIN EN 1605:2013-05, Wärmedämmstoffe für das Bauwesen - Bestimmung der Verformung bei definierter Druck- und Temperaturbeanspruchung.

### EN 12086

DIN EN 12086:2013-06, Wärmedämmstoffe für das Bauwesen - Bestimmung der Wasserdampfdurchlässigkeit.

### EN 12087

DIN EN 12087:2013-06, Wärmedämmstoffe für das Bauwesen - Bestimmung der Wasseraufnahme bei langzeitigem Eintauchen.

### EN 12089

DIN EN 12089:2013-06, Wärmedämmstoffe für das Bauwesen – Bestimmung des Erhaltens bei Biegebeanspruchung.

### EN 12207

DIN EN 12207:2017-03, Fenster und Türen - Luftdurchlässigkeit – Klassifizierung.

### EN 12667

DIN EN 12667:2001-05, Wärmetechnisches Verhalten von Baustoffen und Bauprodukten - Bestimmung des Wärmedurchlasswiderstandes nach dem Verfahren mit dem Plattengerät und dem Wärmestrommessplatten-Gerät - Produkte mit hohem und mittlerem Wärmedurchlasswiderstand.

### EN 13163

DIN EN 13163:2017-02, Wärmedämmstoffe für Gebäude – Werkmäßig hergestellte Produkte aus expandiertem Polystyrol (EPS) – Spezifikationen.



#### EN 13501-1

DIN EN 13501-1:2019-05, Klassifizierung von Bauprodukten und Bauarten zu ihrem Brandverhalten – Teil 1; Klassifizierung mit den Ergebnissen aus den Prüfungen zum Brandverhalten von Bauprodukten.

### EN 15804

DIN EN 15804:2012+A2:2019+AC:2021, Nachhaltigkeit von Bauwerken – Umweltproduktdeklarationen – Grundregeln für die Produktkategorie Bauprodukte.

### ISO 717-1

ISO 717-1:2020-12, Akustik - Bewertung der Schalldämmung in Gebäuden und von Bauteilen - Teil 1: Luftschalldämmung.

### ISO 10140-2

ISO 10140-2:2021-04, Akustik - Messung der Schalldämmung von Bauteilen im Prüfstand - Teil 2: Messung der Luftschalldämmung.

### ISO 14025

DIN EN ISO 14025:2011-10, Umweltkennzeichnungen und deklarationen – Typ III Umweltdeklarationen – Grundsätze und Verfahren.

### **ISO 14044**

DIN EN ISO 14044:2006-10, Umweltmanagement – Ökobilanz – Anforderungen und Anleitungen.

### **ISO 14130**

ISO 14130:1997-12, Faserverstärkte Kunststoffe - Bestimmung der scheinbaren interlaminaren Scherfestigkeit nach dem Dreipunktverfahren mit kurzem Balken.

### ISO 16000-3

ISO 16000-3:2022-09, Innenraumluftverunreinigungen - Teil 3: Messen von Formaldehyd und anderen Carbonylverbindungen in der Innenraumluft und in Prüfkammern - Probenahme mit einer Pumpe.

### ISO 16000-6

ISO 16000-6:2021-08, Innenraumluftverunreinigungen - Teil 6: Bestimmung organischer Verbindungen (VVOC, VOC, SVOC) in Innenraum- und Prüfkammerluft durch aktive Probenahme auf Adsorptionsröhrchen, thermischer Desorption und Gaschromatographie mit MS oder MS-FID.

### ISO 16000-9

ISO 16000-9:2006-02, Innenraumluftverunreinigungen - Teil 9: Bestimmung der Emission von flüchtigen organischen Verbindungen aus Bauprodukten und Einrichtungsgegenständen - Emissionsprüfkammer-Verfahren.

### ISO 16000-11

ISO 16000-11:2006-02, Innenraumluftverunreinigungen - Teil 11: Bestimmung der Emission von flüchtigen organischen Verbindungen aus Bauprodukten und Einrichtungsgegenständen - Probenahme, Lagerung der Proben und Vorbereitung der Prüfstücke.

### Weitere Literatur

### **AgBB**

AgBB, Ausschuss zur gesundheitlichen Bewertung von Bauprodukten, Deutsches Umweltbundesamt, Wörlitzer Platz 1, 06844 Dessau Roßlau. Mai 2010.

#### AVV

Abfallverzeichnis-Verordnung (AVV) vom 10. Dezember 2001 (BGBI. I S. 3379), die zuletzt durch Artikel 1 der Verordnung vom 30. Juni 2020 (BGBI. I S. 3005) geändert worden ist.

### **BBSR**

BBSR-Tabelle. Nutzungsdauern von Bauteilen für Lebenszyklusanalysen nach Bewertungssystem Nachhaltiges Bauen (BNB), Stand: 11/2011.

### **CEN TS 16516**

CEN TS 16516:2013-12, Bauprodukte: Bewertung der Freisetzung von gefährlichen Stoffen - Bestimmung von Emissionen in die Innenraumluft.

### **EPEA GmbH**

EPEA GmbH – Part of Drees & Sommer, 2021 Cradle to Cradle Products Innovation Institute, Cradle to Cradle Certified®, Cradle to Cradle SILVER. Zertifikatsnummer: 5801. Ausstellungsdatum: 3. November 2022. Ablaufdatum: 30. Juni 2024.

### **Eurofins**

Eurofins Produkt Testing A/S, Smedeskovvej 38, 8464 Galten, Denmark; Prüfbericht 392-2016-004 18900.

#### GaBi

GaBi 10, Software System and Database for Life Cycle Engineering. DB 2022.2. Sphera, 1992-2022. Verfügbar in: https://gabi.sphera.com/support/gabi

### **GEV-EMICODE**

Gemeinschaft Emissionskontrollierte Verlegewerkstoffe, Klebstoffe und Bauprodukte, EC1PLUS.

### **IBU 2021**

Allgemeine Anleitung für das EPD-Programm des Institut Bauen und Umwelt e.V. (IBU). Version 2.0, Berlin: Institut Bauen und Umwelt e.V., 2021. www.ibuepd.com

### **PCR Teil A**

Produktkategorie-Regeln für gebäudebezogene Produkte und Dienstleistungen. Teil A: Rechenregeln für die Ökobilanz und Anforderungen an den Projektbericht gemäß EN 15804+A2:2019. Version 1.2. Berlin: Institut Bauen und Umwelt e.V., 2021.

### PCR: Dämmstoffe aus Schaumkunststoffen

Produktkategorie-Regeln für gebäudebezogene Produkte und Dienstleistungen. Teil B: Anforderungen an die Umwelt-Produktdeklaration für Dämmstoffe aus Schaumkunststoffen, Version 1.7. Berlin: Institut Bauen und Umwelt e.V. (Hrsg.), 2019.





### Herausgeber

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Deutschland +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com



### Programmhalter

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Deutschland +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com



### Ersteller der Ökobilanz

Daxner & Merl GmbH Schleifmühlgasse 13/24 1040 Wien Österreich +43 676 849477826 office@daxner-merl.com www.daxner-merl.com



### Inhaber der Deklaration

Meesenburg Großhandel KG Westerallee 162 24941 Flensburg Deutschland +49 461 5808-0 flensburg@meesenburg.de www.meesenburg.com